If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x-3x^2=55
We move all terms to the left:
40x-3x^2-(55)=0
a = -3; b = 40; c = -55;
Δ = b2-4ac
Δ = 402-4·(-3)·(-55)
Δ = 940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{940}=\sqrt{4*235}=\sqrt{4}*\sqrt{235}=2\sqrt{235}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{235}}{2*-3}=\frac{-40-2\sqrt{235}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{235}}{2*-3}=\frac{-40+2\sqrt{235}}{-6} $
| x*2-2x+0,94=0 | | 2b/(3+b)^2=-1 | | 9x-26=7x-6 | | 5x^2-10=2x | | 2x+5=3x-17 | | 3x-4÷2-6x-5÷8=3x-1÷16 | | 2^x=5x | | 2(x-2)^2-36=0 | | 9=2e+3 | | X=21-4y | | 6n3=90 | | 5x+4+2x-20=180 | | 7x-29/5=4 | | 10x-8+4x-5=6-9x-5x | | 0.6=y/0.3 | | 6y^2-35y+50=0 | | 7x1.5x=63 | | 10/x+2+10/x-2=11/12 | | (4u-1)(8-u)=0 | | 7^7x=5^-x+2 | | -9x=-68 | | 7x-1=6x+18 | | 7x-3=13x+3 | | 5-5(10x+50)=10 | | 0.6=y÷0.3 | | 2x-8x+6=6-6x | | 3^x=147 | | x2+4=4 | | 8x+5x(.5)=3600 | | 15x12x+30=18 | | 3(x+14)-5(x-1)=9x-5 | | 9/x-3=x-4/x-3+1/4 |